What is Data Science?




What is Data Science?

Use of the term Data Science is increasingly common, but what does it exactly mean? What skills do you need to become Data Scientist? What is the difference between BI and Data Science? How are decisions and predictions made in Data Science? These are some of the questions that will be answered further.

First, let’s see what is Data Science. Data Science is a blend of various tools, algorithms, and machine learning principles with the goal to discover hidden patterns from the raw data. How is this different from what statisticians have been doing for years?

A Data Analyst usually explains what is going on by processing history of the data. On the other hand, Data Scientist not only does the exploratory analysis to discover insights from it, but also uses various advanced machine learning algorithms to identify the occurrence of a particular event in the future. A Data Scientist will look at the data from many angles, sometimes angles not known earlier.

So, Data Science is primarily used to make decisions and predictions making use of predictive causal analytics, prescriptive analytics (predictive plus decision science) and machine learning.

Predictive causal analytics 

If you want a model which can predict the possibilities of a particular event in the future, you need to apply predictive causal analytics. Say, if you are providing money on credit, then the probability of customers making future credit payments on time is a matter of concern for you. Here, you can build a model which can perform predictive analytics on the payment history of the customer to predict if the future payments will be on time or not.

Prescriptive analytics

If you want a model which has the intelligence of taking its own decisions and the ability to modify it with dynamic parameters, you certainly need prescriptive analytics for it. This relatively new field is all about providing advice. In other terms, it not only predicts but suggests a range of prescribed actions and associated outcomes. The best example for this is Google’s self-driving car which I had discussed earlier too. The data gathered by vehicles can be used to train self-driving cars. You can run algorithms on this data to bring intelligence to it. This will enable your car to take decisions like when to turn, which path to take, when to slow down or speed up.

Machine learning for making predictions

If you have transactional data of a finance company and need to build a model to determine the future trend, then machine learning algorithms are the best bet. This falls under the paradigm of supervised learning. It is called supervised because you already have the data based on which you can train your machines. For example, a fraud detection model can be trained using a historical record of fraudulent purchases.

Machine learning for pattern discovery

If you don’t have the parameters based on which you can make predictions, then you need to find out the hidden patterns within the dataset to be able to make meaningful predictions. This is nothing but the unsupervised model as you don’t have any predefined labels for grouping. The most common algorithm used for pattern discovery is Clustering. Let’s say you are working in a telephone company and you need to establish a network by putting towers in a region. Then, you can use the clustering technique to find those tower locations which will ensure that all the users receive optimum signal strength.

Let’s see how the proportion of above-described approaches differ for Data Analysis as well as Data Science. As you can see in the image below, Data Analysis includes descriptive analytics and prediction to a certain extent. On the other hand, Data Science is more about Predictive Causal Analytics and Machine Learning.



Author Biography.

CrowdforThink
CrowdforThink

CrowdforThink is the leading Indian media platform, known for its end-to-end coverage of the Indian startups through news, reports, technology and inspiring stories of startup founders, entrepreneurs, investors, influencers and analysis of the startup eco-system, mobile app developers and more dedicated to promote the startup ecosystem.

Join Our Newsletter.

Subscribe to CrowdforThink newsletter to get daily update directly deliver into your inbox.

CrowdforJobs is an advanced hiring platform based on artificial intelligence, enabling recruiters to hire top talent effortlessly.

CrowdforJobs

CrowdforApps brings to you the well researched list of the most successful and finest App development companies, Web software developers.

CrowdforApps

CrowdforGeeks is where lifelong learners come to learn the skills they need, to land the jobs they want, to build the lives they deserve.

CrowdforGeeks

CrowdforThink is a leading Indian media and information platform, known for its end-to-end coverage of the Indian startup ecosystem.

CrowdforThink
CFT

News & Blogs

847341f132aec3d5bfcdd67d36682529.png

Why learning Python is now essential for all da...

Since the year 1950, the world has seen the development of in excess of a couple of programming d...

Top Authors

With good communication and writing skiils, Astha Sharma is a full-time content writer working wi...

Astha Sharma

Amit Agrawal Founder and COO at Cyber Infrastructure (P) Limited which is an custom software deve...

Amit Agrawal

Overall 3+ years of experience as a Full Stack Developer with a demonstrated history of working i...

Lokesh Gupta

SB Components Ltd is a specialist UK manufacturer of protective cases for single board compu...

SB Components
CFT

Our Client Says